- вполне измеримое множество
- well measurable set
Русско-английский научно-технический словарь Масловского. 2015.
Русско-английский научно-технический словарь Масловского. 2015.
ИЗМЕРИМОЕ РАЗБИЕНИЕ — пространства с мерой ( М,m) разбиение x. этого пространства на непересекающиеся подмножества (именуемые элементами разбиения), к рое можно получить как разбиение на множества уровня нек рой измеримой функции (с числовыми значениями) на М. Это… … Математическая энциклопедия
АБСОЛЮТНАЯ НЕПРЕРЫВНОСТЬ — 1) А. н. интеграла свойство неопределенного интеграла (Лебега). Пусть функция f интегрируема на множестве Е. Интеграл от f на измеримых подмножествах является абсолютно непрерывной функцией (см. ниже п. 3) множества относительно меры m, т. е. для … Математическая энциклопедия
ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… … Энциклопедия Кольера
ИНТЕГРАЛЬНЫЙ ОПЕРАТОР — отображение когда закон соответствия Азадается с помощью интеграла. И. о. наз. иногда интегральным преобразованием. Так, напр., для интегрального оператора Урысона (см. Урысона уравнение): закон соответствия Аопределяется интегралом (или оператор … Математическая энциклопедия
Список статей по математической логике — Это служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не ус … Википедия
Интеграл — (от лат. integer целый) одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны, отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости… … Большая советская энциклопедия
ФРЕДГОЛЬМА УРАВНЕНИЕ — интегральное уравнение вида Ф. у. 1 го род а, или вида Ф. у. 2 го рода, если интегральный оператор является вполне непрерывным в нек ром функциональном пространстве Е. Предполагается, что свободный член f и искомая функция принадлежат… … Математическая энциклопедия
ФРЕДГОЛЬМА ЯДРО — 1) Ф. я. функция К( х, у), определенная на и порождающая вполне непрерывный оператор где измеримое множество в n мерном евклидовом пространстве, а Е, Е1 нек рые функциональные пространства. Оператор (*) наз. интегральным оператором Фредгольма из… … Математическая энциклопедия
МЕРА — множества, обобщение понятия длины отрезка, площади фигуры, объема тела, интуитивно соответствующее массе множества при нек ром распределении массы по пространству. Понятие М. множества возникло в теории функций действительного переменного в… … Математическая энциклопедия
КАРДИНАЛЬНОЕ ЧИСЛО — трансфинитное число, мощность по Кантору, кардинал множества A, такое свойство этого множества, к рое присуще любому множеству В, равномощному А. При этом два множества Аи Вназ. равномощными, если существует взаимно однозначная функция f : с… … Математическая энциклопедия
КОЛИЧЕСТВО — филос. категория, отображающая общее в качественно однородных вещах и явлениях. Чтобы выявить в них это общее, необходимо, во первых, установить их однородность, т.е. показать, в каком именно отношении они эквивалентны между собою, во вторых,… … Философская энциклопедия